1. Basic Concepts of Convex Analysis
1.1. Convex Sets and Functions
1.2. Convex and Affine Hulls
1.3. Relative Interior and Closure
1.4. Recession Cones
1.5. Hyperplanes
1.6. Conjugate Functions
1.7. Summary
2. Basic Concepts of Polyhedral Convexity
2.1. Extreme Points
2.2. Polar Cones
2.3. Polyhedral Sets and Functions
2.4. Polyhedral Aspects of Optimization
3. Basic Concepts of Convex Optimization
3.1. Constrained Optimization
3.2. Existence of Optimal Solutions
3.3. Partial Minimization of Convex Functions
3.4. Saddle Point and Minimax Theory
4. Geometric Duality Framework
4.1. Min Common/Max Crossing Duality
4.2. Some Special Cases
4.3. Strong Duality Theorem
4.4. Existence of Dual Optimal Solutions
4.5. Duality and Polyhedral Convexity
4.6. Summary
5. Duality and Optimization
5.1. Nonlinear Farkas’ Lemma
5.2. Linear Programming Duality
5.3. Convex Programming Duality
5.4. Subgradients and Optimality Conditions
5.5. Minimax Theory
5.6. Theorems of the Alternative
5.7. Nonconvex Problems
Appendix A: Mathematical Background
Notes and Sources
Supplementary Chapter 6 on Convex Optimization Algorithms
+ Read more