Preface
1 Modules
1.1 Free modules
1.2 Projective modules
1.3 Tensor products
1.4 Flat modules
2 Localisation
2.1 Ideals
2.2 Local rings
2.3 Localisation
2.4 Applications
3 Noetherian Rings
3.1 Noetherian modules
3.2 Primary decomposition
3.3 Artinian modules
3.4 Length of a module
4 Integral Extensions
4.1 Integral elements
4.2 Integral extensions
4.3 Integrally closed domains
4.4 Finiteness of integral closure
5 Dedekind Domains
5.1 Valuation rings
5.2 Discrete valuation rings
5.3 Dedekind domain
6 Completions
6.1 Filtered rings and modules
6.2 Completion
6.3 I-adic filtration
6.4 Associated graded rings
7 Homology
7.1 Complexes
7.2 Derived functors
7.3 Homological dimension
8 Dimension
8.1 Hilbert Samuel polynomial
8.2 Krull dimension
8.3 Dimension of algebras
8.4 Depth
8.5 Cohen–Macaulay modules
9 Regular Local Rings
9.1 Regular local rings
9.2 Homological characterisation
9.3 Normality conditions
9.4 Complete local rings
10 Some Conjectures
10.1 Big Cohen–Macaulay modules conjecture
10.2 Intersection conjecture
10.3 Zero-divisor conjecture
10.4 Bass’s conjecture