Preface
Chapter 1. Introduction
Part 1. BASIC THEORY
Chapter 2. Symplectic geometry and analysis
Chapter 3. Fourier transform, stationary phase
Chapter 4. Semiclassical quantization
Part 2. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
Chapter 5. Semiclassical defect measures
Chapter 6. Eigenvalues and eigenfunctions
Chapter 7. Estimates for solutions of PDE
Part 3. ADVANCED THEORY AND APPLICATIONS
Chapter 8. More on the symbol calculus
Chapter 9. Changing variables
Chapter 10. Fourier integral operators
Chapter 11. Quantum and classical dynamics
Chapter 12. Normal forms
Chapter 13. The FBI transform
Part 4. SEMICLASSICAL ANALYSIS ON MANIFOLDS
Chapter 14. Manifolds
Chapter 15. Quantum ergodicity
Part 5. APPENDICES
Appendix A. Notation
Appendix B. Differential forms
Appendix C. Functional analysis
Appendix D. Fredholm theory
Bibliography
Index