Preface
Chapter 1. Introduction
1.1. Notation
1.2. Well-Posed Problems
1.3. Overview
Chapter 2. First-Order Differential Equations
2.1. Noncharacteristic Hypersurfaces
2.2. The Method of Characteristics
2.3. A Priori Estimates
2.4. Exercises
Chapter 3. An Overview of Second-Order PDEs
3.1. Classifications
3.2. Energy Estimates
3.3. Separation of Variables
3.4. Exercises
Chapter 4. Laplace Equations
4.1. Fundamental Solutions
4.2. Mean-Value Properties
4.3. The Maximum Principle
4.4. Poisson Equations
4.5. Exercises
Chapter 5. Heat Equations
5.1. Fourier Transforms
5.2. Fundamental Solutions
5.3. The Maximum Principle
5.4. Exercises
Chapter 6. Wave Equations
6.1. One-Dimensional Wave Equations
6.2. Higher-Dimensional Wave Equations
6.3. Energy Estimates
6.4. Exercises
Chapter 7. First-Order Differential Systems
7.1. Noncharacteristic Hypersurfaces
7.2. Analytic Solutions
7.3. Nonexistence of Smooth Solutions
7.4. Exercises
Chapter 8. Epilogue
8.1. Basic Linear Differential Equations
8.2. Examples of Nonlinear Differential Equations
Bibliography
Index
+ Read more