Preface
Chapter 0. About Euclidean Geometry
Chapter 1. Toy Geometries and Main Definitions
Chapter 2. Abstract Groups and Group Presentations
Chapter 3. Finite Subgroups of SO(3) and the Platonic Bodies
Chapter 4. Discrete Subgroups of the Isometry Group of the Plane and Tilings
Chapter 5. Reflection Groups and Coxeter Geometries
Chapter 6. Spherical Geometry
Chapter 7. The Poincare Disk Model of Hyperbolic Geometry
Chapter 8. The Poincare Half-Plane Model
Chapter 9. The Cayley–Klein Model
Chapter 10. Hyperbolic Trigonometry and Absolute Constants
Chapter 11. History of Non-Euclidean Geometry
Chapter 12. Projective Geometry
Chapter 13. “Projective Geometry Is All Geometry”
Chapter 14. Finite Geometries
Chapter 15. The Hierarchy of Geometries
Chapter 16. Morphisms of Geometries
Appendix A. Excerpts from Euclid’s “Elements” Postulates of Book I
Appendix B. Hilbert’s Axioms for Plane Geometry I
Bibliography
Index