Preface xvii 
  1 Physics of Semiconductors 1
  1.1 Introduction 1
  1.2 Recapitulation  from Previous Studies 1
  1.2.1 Atomic bonding 1
  1.2.2 Covalent bonds 2
  1.2.3 Concept of holes 2
  1.2.4 Intrinsic and extrinsic semiconductors 3
  1.2.5 Elemental and compound semiconductors 4
  1.2.6 Significance of the symbols n+,  n, n-, p, p+, p- 4
  1.2.7 Summary of the recapitulations 4
  1.3 Crystal Structure  5
  1.3.1 Various types of solids 5
  1.3.2 Structure of a crystal 7
  1.3.3 Basic crystal structures 8
  1.3.4 Lattice point calculation 11
  1.3.5 Structure of silicon and GaAs 11
  1.3.6 Index system for crystal planes (crystallographic notations) 15
  1.3.7 Crystal direction 17
  1.4 Introduction to  Atoms and Electrons 19
  1.4.1 Journey from the classical model to quantum numbers 19
  1.4.2 Limitations of classical physics 22
  1.4.3 Quantum mechanics 24
  1.5 Band Formation  theory of Semiconductors 40
  1.5.1 Band formation in silicon 45
  1.5.2 Semiconductors, insulators and metals 46
  1.5.3 Band gap energy 47
  1.5.4 Band structure in compound semiconductors 48
  1.6 E–k Diagram 48
  1.6.1 Concept and theory of E–k diagram 48
  1.6.2 Drift current due to movement of electrons 51
  1.6.3 Concept of holes, negative effective mass concept for holes and
  current due to holes 53
  1.6.4 Direct band gap and indirect band gap semiconductors 56
  1.7 Transport of  Carriers 58
  1.7.1 Drift 60
  1.7.2 Diffusion  62
  1.7.3 Diffusion  and drift of carriers: Built in or induced field and the
  Einstein relation 64
  1.7.4 Pair generation in semiconductors 65
  1.7.5 Recombination process and life time of carriers 66
  1.7.6 Excess carriers and the significance of life time 67
  1.8 Carrier  Concentrations and Introduction to Fermi Levels 67
  1.8.1 Different  distribution laws 68
  1.8.2 Fermi-Dirac distribution 68
  1.8.3 Metals and insulators with respect to the Fermi–Dirac distribution 69
  1.8.4 Fermi-Dirac distribution for semiconductors 70
  1.8.5 Electrons and hole concentrations at equilibrium 71
  1.8.6 Ionisation energy 77
  1.8.7 Degenerate semiconductors 78
  1.9 Mobility and  Scattering 79
  1.9.1 Drift velocity and carrier mobility 82
  1.9.2 Different  types of scattering 83
  1.9.3 High field effects  and velocity saturation 84
  1.10 Excess Carriers  84
  1.10.1 Injection of excess carriers 84
  1.10.2 Quasi Fermi level 86
  1.10.3 Continuity equation 87
  1.10.4 Steady-state carrier injection and diffusion length 90
  1.11 Appendix 91
  1.11.1 Gauss’s law 91
  1.11.2 Poisson’s equation 91
  1.11.3 Hall effect  92
  1.11.4 Density of states in an energy band 94
2 Diodes 121
  2.1 Introduction 121
  2.2 p-n Junction  Under Zero Bias (Unbiased) Conditions 122
  2.2.1 Formation of depletion region 126
  2.2.2 Contact potential 127
  2.2.3 EquilibriumFermi levels 131
  2.2.4 Expression for electric field and space–charge width 132
  2.3 Forward and  Reverse Bias 135
  2.3.1 Forward bias 135
  2.3.2 Reverse bias 138
  2.3.3 Drift and diffusion  currents in the biased diode 140
  2.4 Current  Calculation in p-n Junction 140
  2.4.1 Assumptions for deriving the current expression in a p-n junction 145
  2.4.2 Minority and majority currents in the p-n diode 145
  2.4.3 Static and dynamic resistance 149
  2.5 Applications of  p-n Diodes 149
  2.6 Reverse Bias  Breakdown 150
  2.6.1 Avalanche breakdown 151
  2.6.2 Zener breakdown 153
  2.6.3 Differences  between avalanche and Zener diodes 157
  2.7 Tunnel Diode 157
  2.7.1 I–V characteristics of tunnel diode 157
  2.8 Capacitance of  p-n Junctions 159
  2.8.1 Junction capacitance 159
  2.8.2 Varactor diode 160
  2.8.3 Diffusion  capacitance 161
  2.8.4 One-sided junction 162
  2.8.5 Graded junction 163
  2.9 Switching  Characteristics of a Semiconductor Diode 164
  2.9.1 The turn off transient  165
  2.9.2 Switching diode 167
  2.9.3 Rectifier diode 167
  2.10  Metal–semiconductor Contacts 169
  2.10.1 Comparison of Schottky and p-n diodes 172
  2.10.2 Ohmic contacts 174
  2.11 Photovoltaic Effect 176
  2.12 Solar Cell 179
3 Bipolar Junction Transistors 204
  3.1 Introduction 204
  3.1.1 Three terminal device and the general concept of a control input  terminal205
  3.2 Simplified  Structure and Modes of Operation 206
  3.2.1 Regimes of operation 207
  3.3 Band Diagram of a  Transistor 208
  3.4 Various Current  Components in an n-p-n BJT 211
  3.5 Bipolar  Transistor: A Conceptual Picture 213
  3.6 Transistor Action  217
  3.7 Operation of the  n-p-n Transistor in the Active Mode 218
  3.8 How a BJT  Provides Amplification 223
  3.8.1 Minority  carrier profile and band diagram in different modes 225
  3.9 Equivalent  Circuit Model of the Forward Active Mode 226
  3.10 Models of  Reverse Active Mode BJT 227
  3.11 Combining Models  of Forward Active and Reverse Active: Ebers–Moll Model 229
  3.11.1 First use of Ebers–Moll model: Current in forward active mode 230
  3.11.2 Second use of Ebers–Moll model: Current in the saturation mode 231
  3.12 Load Line and  Modes of Operation 232
  3.13 Early Effect or Base Width  Modulation 233
  3.14 Common Emitter  Characteristics and Common Emitter Current Gain 235
  3.15 Saturation  Voltage and Saturation Resistance 237
  3.16 Common Base  Characteristics 239
  3.17 The Collector  Saturation Current and Transistor Breakdown 241
  3.17.1 Avalanche multiplication breakdown 241
  3.17.2 Breakdown due to punch-through 245
  3.18 BJT Functioning  as an Amplifier and a Switch 246
  3.18.1 Large signal operation 246
  3.18.2 Amplifier gain 248
  3.18.3 Operation as a switch 249
  3.19 Large Signal  Model 250
  3.19.1 Small signal operation and models 251
  3.19.2 Concept of transconductance 251
  3.19.3 Small signal collector current and transconductance 253
  3.19.4 Small signal base current and input resistance at the base 253
  3.19.5 Small signal emitter current and the input resistance at the emitter  254
  3.19.6 Small signal voltage gain 255
  3.20 Hybrid _ Model 255
  3.20.1 Inclusion of early effect in the Hybrid _ model 256
  3.21 h(hybrid)  Parameter Model 257
  3.22 Kirk Effect 260
  3.23 Collector  Current Fall off at  Low and High Currents 261
  3.24 Future Trends in  BJT Design 261
4 Junction Field Effect Transistors  (JFETs) 287
  4.1 Introduction 287
  4.2 Gate Isolation  287
  4.3 Structure of JFET  288
  4.3.1 Basic JFET operation 289
  4.4 The Working  Principle of JFET Explained with
  Equations 292
  4.5 Ideal dc  Current–voltage Relationship 296
  4.6 Comparison  Between JFET and BJT 296
  4.7 Parameters of JFET  297
5 Metal Oxide  Semiconductor Field Effect  Transistors (MOSFETs) 308
  5.1 Introduction 308
  5.2 Basic Operation  311
  5.2.1 Operation without gate bias 311
  5.2.2 Operation with a positive gate bias 312
  5.2.3 Operation with a small VDS 314
  5.2.4 Operation as VDS is increased 314
  5.3 MOS Capacitor 316
  5.3.1 Accumulation 317
  5.3.2 Depletion 319
  5.3.3 Inversion 320
  5.3.4 Detailed analysis of depletion 320
  5.3.5 Detailed analysis of inversion 324
  5.4 Flat Band  Voltage: Effect  of Real Surfaces 328
  5.4.1 Equalisation of the Fermi levels 328
  5.4.2 Charges in the oxide 329
  5.4.3 Interface traps 329
  5.4.4 Flat-band voltage 330
  5.5 Expression of  Threshold Voltage 331
  5.6  Capacitance–Voltage Characteristics of the
  MOS Structure 333
  5.7 I-V  Characteristics of a MOSFET 334
  5.8 Transconductance  (gm)  342
  5.9 pMOS and its I-V  Characteristics 344
  5.10 Aspect Ratio and  its Implication 345
  5.11 Channel Length  Modulation 347
  5.12 Substrate Bias Effects 350
  5.12.1 Effect  of substrate bias on threshold voltage 351
  5.12.2 Influence of substrate bias on device characteristics 353
  5.13 Large Signal  Model of a MOSFET 353
  5.14 Small Signal  Equivalent Circuit Model 355
  5.15 MOS and VLSI 357
  5.15.1 SSI, MSI, LSI  and VLSI 359
  5.16 MOS Inverter 360
  5.16.1 Resistive load inverter 361
  5.16.2 CMOS inverter 362
  5.16.3 Appendix 366
6 Charge Coupled Devices 390
  6.1 Introduction 390
  6.2 Photoelectric Effect: Vasis of CCD  Operation 392
  6.3 Dynamic Effects in MOS  Capacitors 392
  6.4 Surface-channel  CCD (SCCD) and Buried-channel CCD (BCCD) 393
  6.5 Structure of a  CCD 395
  6.6 Electric Field in  CCD 395
  6.7 Charge Generation  in a CCD 398
  6.8 Working Principle  of CCD 398
  6.9 Fabrication of  CCD 400
  6.10 An Analogy  (Bucket Brigade) to Explain CCD Operation 400
  6.11 Movement of  Charge Packet in a CCD 402
  6.12 Thick Front-side  Illuminated CCD 407
  6.13 Thinned  Back-side Illuminated CCD 408
  6.14 Other CCD  Structures 408
  6.15 How do CCDs  Record Colour? 409
  6.16 CCDs as Imaging  Devices 409
7 Elements of Fabrication Technology 414
  7.1 Introduction 414
  7.2 Making a Wafer  Base: From Crystal  Growth to Wafer Preparation 416
  7.3 Changing Layer  Composition or Doping Methods 418
  7.3.1 Ion implantation 418
  7.3.2 Diffusion  419
  7.4 Adding a Layer or  Deposition 420
  7.4.1 Epitaxial deposition 420
  7.4.2 Chemical vapour deposition (CVD) 420
  7.4.3 Oxide growth or oxidation 422
  7.4.4 Metallisation by “sputtering” 423
  7.4.5 “Metallisation” by evaporation 423
  7.5 Removing a Layer  or Etching 424
  7.6 Photolithography  or Pattern Transfer 424
  7.7 Electrical  Probing and Die Separation 428
  7.8 Example  Fabrication to Create Hole/block 428
  7.9 nMOS Fabrication  Process Steps 430
  7.10 CMOS Fabrication  Process 430
  7.10.1 CMOS fabrication process by n-well on p-substrate 432
  7.10.2 CMOS fabrication process by p-well on n-substrate 435
  7.11 Resistor Within  an IC 437
  7.12 Capacitor Within  an IC 438
  7.13 Diode Within an  IC 439
  7.14 BJT Fabrication  440
8 Sub-micron MOSFETs 450
  8.1 Introduction 450
  8.2 Scaling 450
  8.2.1 Benefits of  scaling 451
  8.2.2 Short channel effects: Result of  aggressive scaling 451
  8.2.3 Types of  scaling 452
  8.3 Short channel effects 458
  8.3.1 Reduction of effective threshold voltage 459
  8.3.2 Hot electron effects 462
  8.3.3 Avalanche breakdown and parasitic bipolar action 464
  8.3.4 DIBL (drain induced barrier lowering) 465
  8.3.5 Channel length modulation 466
  8.3.6 Punch-through 467
  8.3.7 Ballistic transport 467
  8.3.8 Velocity saturation 468
  8.3.9 Mobility degradation 471
  8.3.10 Sub-threshold conduction 473
  8.3.11 Output impedance variation with drain–source voltage 477
  8.3.12 Summary of scaling and short channel effects 478
  8.4 VLSI Device  Structures 479
  8.4.1 Gate stack and gate material 479
  8.4.2 Source–drain structures 479
  8.4.3 Channel doping structure 481
  8.4.4 Reverse short-channel effect (RSCE) 481
  8.5 Silicon on  Insulator (SOI) MOSFET 483
  8.6 Introduction to  high-k MOSFETs 484
  8.7 Introduction to  SiGe or strained Si MOSFET for higher mobility 486
  8.8 Double-gate (DG)  MOSFET 487
  8.9 FinFET 488
  8.10 Trends and  limiting factors for the scaling of MOSFETs (beyond 100 nm) 490
9 Heterostructure Semiconductor Devices 499
  9.1 Introduction 499
  9.1.1 General  properties of heterostructures 500
  9.1.2 Different design options  for heterostructures 501
  9.2 Band Diagram 502
  9.2.1 Steps for drawing band diagram 504
  9.3 Quantum Well 505
  9.3.1 Quantum confinement in MOSFET 507
  9.4 Modulation Doping  507
  9.4.1 Benefits of modulation doping 510
  9.5 HEMT (high  electron mobility transistor) 510
  9.5.1 Structure 512
  9.6  GaAs/AlGaAs HBTs 513
  9.7  Si–Ge Heterostructures 516
10 Power Electronic Devices 520
  10.1 Introduction 520
  10.2 Difference Between Power  and Linear Electronics 521
  10.3 Power Bipolar  Junction Transistor 522
  10.3.1 Construction of a power BJT 522
  10.3.2 Power BJT characteristics 523
  10.4 Darlington Pair Configuration 527
  10.5 Power MOSFET 528
  10.5.1 Constructional features of a power MOSFET 529
  10.5.2 Principle of operation 531
  10.5.3 Parasitic BJT in a MOSFET cell 533
  10.5.4 Safe operating area (SOA) 534
  10.6 Silicon  Controlled Rectifier (SCR) or Thyristor 535
  10.6.1 Basic operating principle of a thyristor 536
  10.6.2 Triggering the SCR 538
  10.6.3 Different  methods to turn on a SCR 539
  10.6.4 SCR turn off 539
  10.6.5 Current voltage characteristics of SCR 540
  10.6.6 Energy band diagrams for the p-n-p-n diode 541
  10.6.7 Hole flow and electron flow in a p-n-p-n diode 541
  10.7 DIAC 543
  10.8 TRIAC 543
  10.9 Insulated Gate  Bipolar Transistor (IGBT) 545
  10.9.1 Constructional features of an IGBT 545
  10.9.2 Principle of working 547
  10.9.3 Steady state characteristics of an IGBT 548
11 Negative Resistance Devices 559
  11.1 Importance and  use of negative resistance devices 559
  11.2 Gunn Diode 560
  11.2.1 Gunn effect  561
  11.2.2 Two valley mode theory 562
  11.2.3 Structure and fabrication of GaAs Gunn diodes 568
  11.3 Read Diodes 569
  11.4 IMPATT Diode 569
  11.4.1 IMPATT diode structure 570
  11.4.2 IMPATT diode operation 571
  11.4.3 Advantages and disadvantages of IMPATT diode 573
  11.5 Uni-junction  Transistors (UJTs) 574
  11.6 Example Problems  575
12 MEMS 580
  12.1 Introduction 580
  12.2 What is  Micro-engineering? 581
  12.3 Definition of  MEMS 581
  12.4 How MEMS Work  582
  12.4.1 Micro-sensors technology 582
  12.4.2 Micro-actuator technology 584
  12.5 Importance of  MEMS 585
  12.6 MEMS Markets 586
  12.7 MEMS  Applications 586
  12.8 MEMS and ICs:  Two of a Kind 587
  12.9 Materials used  in MEMS 588
  12.10Micro-machining  589
  12.10.1 Basic fabrication process 589
  12.10.2 Bulk micro-machining 590
  12.10.3 Surface micro-machining 594
13 Optoelectronic Devices 599
  13.1 Introduction 599
  13.2 Optical  Processes 600
  13.2.1 Transitions 600
  13.2.2 Direct and indirect band gap semiconductor 601
  13.2.3 Semiconductors suitable for optoelectronics 602
  13.2.4 Intrinsic band-to-band generation-recombination processes 604
  13.2.5 Electron–hole recombination 605
  13.2.6 Photon generation 609
  13.2.7 Heat generation 609
  13.2.8 Photoemission in a p-n diode 610
  13.2.9 Spontaneous emission: Electroluminescence 611
  13.3 Requirements of  An Optical Source 612
  13.4 Light Emitting  Diode 612
  13.4.1 Processes in LED 614
  13.4.2 Power efficiency  of LED 615
  13.4.3 Basic theory of a hetero-junction LED 615
  13.4.4 Different  LED structures 617
  13.4.5 Advantages, disadvantages and applications of LED 617
  13.5 LASER 617
  13.5.1 Two requirements for lasing action and optical gain 618
  13.5.2 Basic components and the role of feedback 618
  13.5.3 Basic steps required to produce laser beam 620
  13.5.4 Einstein relationships for stimulated emission 623
  13.5.5 Relationship between stimulated and spontaneous emission 624
  13.5.6 Advantages of lasers 625
  13.5.7 Population inversion 625
  13.5.8 Stimulated emission in a p-n junction 625
  13.5.9 The salient points about laser action 626
  13.5.10 Operational parameter of lasers 627
  13.6 Photodetector  627
  13.6.1 p-n junction photodiode 629
  13.6.2 V–I characteristics of a p-n junction photodiode 629
  13.6.3 Disadvantage of p-n junction photodiode 630
  13.6.4 p-i-n photodiode 630
  13.6.5 Avalanche photodiode (APD) 632
  13.7 OEIC  (optoelectronic integrated circuits) 633
Index 640